Project Report
Feature Based Opinion Extraction from Customer
Reviews

Shreya Laddha, Siddhesh Pawar
Supervised by: Prof. Gourab Nath

September 9, 2020

Abstract

In this project, we implemented and extended some of the existing works
on feature extraction and sentiment analysis for better and more informative
summarizing. Our task will help the manufacturer or the seller to gather
total sentiment towards a popular feature of the product based on intensity of
the opinions expressed by the customers in their reviews. This will not only
help the potential customers to get a realistic analysis of the product they are
about to buy but also the sellers to get a detailed analysis of their product
performance.

1 Introduction

It is a common practice that merchants and manufacturers selling products on the
online services such as Amazon ask their customers to review the products and
associated services. As e-commerce and these online services are becoming more
and more popular, the number of customer reviews that a product receives grows
rapidly which gives rise to the need to automating the process of reading the re-
views and drawing meaningful summaries from the reviews which would help not
only the customers to make decisions on whether to buy the product but also to the
manufacturer to know exactly what all things need to be improved in the existing
product and which ones to prioritize. The customers in these platforms are highly
encouraged to share their feedback about their experiences and the products they
have purchased in the form of ratings and reviews. A product may be associated
with several features and the customers may have different opinions on each of these
features.

In this project, we firstly extract the one word features from a set of reviews based
on their frequency of occurrence followed by association rules mining to get a list
of two of word features by examining the words that occur frequently. This is fol-
lowed by sentiment analysis of each and every feature to get an overall sentiment
of a particular feature. This summarization task is different from traditional text
summarization because we are only interested in the specific features of the prod-
uct that customers have opinions on and also whether the opinions are positive or

negative. We do not summarize the reviews by selecting or rewriting a subset of
the original sentences from the reviews to capture their main points as in the classic
text summarization. In this work, we only focus on mining opinion/product features
that the reviewers have commented on.

A question that one may ask is “why not ask the merchant or the manufacturer
of the product to provide a list of features?” This is a possible approach. However,
it has a number of problems: (1) It is hard for a merchant to provide the features
because he/she may sell a large number of products. (2) The words used by mer-
chants or the manufacturer may not be the same as those used by common users of
the product although they may refer to the same features. This causes problem in
identifying what the customers are interested in. Furthermore, customers may com-
ment on the lack of certain features of the product. (3) Customers may comment
on some features that the manufacturer has never thought about, i.e., unexpected
features. (4) The manufacturer may not want users of its product to know certain
weak features. Thus, our first task is to extract the features that the reviewers have
commented upon and then mine the opinion related to that feature.

1.1 Literature Review

Our work finds its motivation from [5]. The first task of the pipeline is to extract the
product features from the dataset. We draw our motivation of using association rules
mining to extract the product features from [§ where the authors have proposed
a number of techniques such as compactness pruning, frequent feature extraction,
redundancy pruning for mining opinion features from product reviews based on data
mining and natural language processing methods such as POS tagging with an ob-
jective to produce a feature-based summary of a large number of customer reviews
of a product sold online. Similarly, [7] provide a novel algorithm for extracting the
opinionated reviews from the data set and summarizing them. The term extraction
techniques in [10] use deep-learning methods such as Bi-LSTMs and CNNs to extract
subword features and thereby recognize named entities and relation. However, the
product features are not named entities and therefore the named entity recognition
techniques will not effectively serve the purpose of extracting the product features
from the reviews.

The second task is the extraction of sentiment from an opinionated review followed
by the classification of opinionated text, e.g. a customer review, as expressing a
positive or negative opinion. It is a widely explored topic in academia and industry
and has a huge amount of literature related to it. We have used VADER (Valence
Aware Dictionary and sEntiment Reasoner) which is a lexicon and rule-based sen-
timent analysis tool that is specifically attuned to sentiments expressed in social
media, for classification of sentiment form an opinionated review [9]. We refer to
[2] where the authors survey four different approaches: 1)training on a mixture of
labeled data from other domains where such data are available 2) training a classifier
as above, but limiting the set of features to those observed in the target domain 3)
using ensembles of classifiers from domains with available labeled data 4) combining
small amounts of labeled data with large amounts of unlabeled data in the target
domain to customizing a sentiment classification system to a new target domain in

the absence of large amounts of labeled data and thereby compare results obtained
by using each of the four approaches and discuss their advantages, disadvantages
and performance. Also, [3] examine factors that make the sentiment classification
problem more challenging which we have tried to address using VADER.

2 Approach

Figure [1] gives the architectural overview of our opinion extraction system. The
inputs to the system are the product reviews of all the customers. The output is
the summary of the reviews. The system involves three main steps: (1) Review
Cleaning; (2) Mining the frequent product features that have been commented on
by the customers; (3) Identify the customer opinions and the opinion intensities for
each product feature

Review Database ") ' Frequent Feature
Review Cleaning POS Tagging |dentification

Compactness
Pruning

Redundancy Pruning

Opinion Polarity and
Strength
Identification

Association Rules " "
{ Mining Frequent Features Autocorrect
QOpinion Phrase
Extraction

Figure 1: Pipeline For Sentiment extraction and classification

Pruning

Sentiment

Groped Features Summarization

2.1 Review Cleaning

In today’s world, emojis have become an important tool for expressing opinions.
However, in this work, for the feature extraction part, we neglect any emojis and
demojify our review dataset before proceeding further. The dataset also contains
a lot of reviews which contain no specific feature and are just simple opinions on
the whole product itself. For a review to express any opinion on a feature, it must
contain atleast a feature, i.e a noun, and an adjective describing the feature. The
minimum word length required is two for a review to be meaningful for our analysis.
We remove all the reviews of one word length, as they are mainly an adjective for the
whole product. We also remove any two word length review which does not contain
(noun+adjective) pair, hence shrinking our review corpus for analysis. All of the
review corpus is also turned to lowercase to avoid distinction between words like
‘Camera’ and ’camera’ during POS tagging as described in Section 2.2.1. However,
for sentiment analysis we use our original review dataset (with uppercase letters and
emojis preserved).

2.2 Frequent Feature Identification

Customers generally write a review about the popular and important features of the
product. We denote these features as frequent features. While the other features
of the product are either infrequently mentioned or not mentioned in reviews. In
our work, we will only mine for the frequent features. Infrequent features are less in
numbers and comprise 15 — 20% of the overall features as discussed in [§]. Features
can be explicitly or implicitly mentioned in a review. For example, "The camera
is amazing but overall, it is not worth spending on the phone.” Here, 'camera’ is
an explicit feature whereas 'value of money’ is an implicit feature. We only extract
the explicit features as the implicit ones are difficult to mine. Human errors are
unavoidable. There is a high possibility that while writing a review, customer might
have made a spelling mistake while mentioning the feature. For example, a customer
might have written 'camara’ and 'batteri’ instead of ’camera’ and ’battery’. This
may lead to a huge loss of information if such incorrectly spelled features are ignored.
We have incorporated the spelling correction in our work which takes care of the
cases which have not more than one error in the spelling. So, words like 'camara’
are treated as ‘camera’ but the words like 'cemara’ are not corrected. The following
NLP methods have been used for frequent features identification:

2.2.1 Parts-of-Speech (POS) Tagging:

POS tagging is a task of labelling each word in a sentence with its appropriate part
of speech. It is a common NLP technique. POS tagging is used to extract all nouns
present in each data point (review text). The product features are mostly nouns
or noun phrases. It is tempting to consider all nouns as features which however
should not be done as not all nouns are features. We have used spaCy which is an
open-source software library for advanced natural language processing, written in
the programming languages Python and Cython [6]. By tokenizing each and every
word in review text and then thereby using POS tagger of spaCy, we filter out a list
of nouns (both common and proper nouns) to be processed further.

2.2.2 Association Rules Mining

After extracting a list of nouns for every review, we need to find the nouns which
can possibly be features. The frequently mentioned nouns and their combinations
have a higher probability of being a meaningful feature and we can extract them
using frequent item-set mining. We apply Apriori Algorithm as mentioned in [I]
for discovering all significant association rules between items in a large database
of transactions. We extract the nouns and noun combinations of length 2, having
the minimum support value (frequency of occurrence) as specified by the user. By
default, the threshold support value is taken to be 0.01. These generated frequent
itemsets are called candidate features since not all of them are meaningful. For
example - ’awesome’ and ’battery camera’, two frequent itemsets obtained after
Apriori algorithm, are not meaningful features and techniques need to be applied to
remove such unwanted features from the list.

2.2.3 Feature Pruning

All the features are tagged as nouns, but not all nouns are features. After obtaining
a list of frequent nouns, we need to remove all those nouns or noun phrases which
are meaningless as features. For this task, we use two types of pruning methods
suggested in [1] as follows:

Compactness Pruning

This pruning technique is used to extract meaningful features from the list of can-
didate features of two words length. A feature containing two words in a sentence
is called compact if the word distance between them is less than 3 and the words
are not separated by any conjunction and punctuation. Here we have modified the
the definition of compactness and the pruning procedure given in [1]. We may have
many sentences which contain more than one features. For every sentence, we iterate
through the list of candidate features. The total occurrences of the two words of the
candidate feature in a sentence together and the number of sentences where these
are found to be compact is then tabulated. We define the m_support as follows:

Total Sentences where compact

(1)

m_support =
bp Total occurrences together

m_support lies between 0 and 1. There will be some cases, where the denominator
will be zero, in these cases we do not define m_support, and the candidate features
are discarded. The candidate features having m_support greater than the user de-
fined threshold value of this m_support will be considered as meaningful features.
Therefore, proper tuning of the threshold value is required for good results.

Redundancy Pruning

This pruning technique is used to extract meaningful features from the list of can-
didate features of one word length. A one word feature is said to be meaningful if it
occurs in quite a sufficient amount of sentences alone, without any other superset of
that feature in it. A superset of feature is defined as the set of two word meaningful
features (after compactness pruning) containing this one word feature. For example,
let ‘camera’ be the feature under analysis. Some other features of the phone con-
tain the word camera as well, e.g. front camera, back camera, rear camera, camera
quality. All these two word features comprise the superset of the feature ’camera’.
We define p_support as follows:

p_support = Number of sentences in which feature occurs alone (2)

Or in other words, p_support = Count of sentences in which no two word feature
from the super set occurs together with the one word feature. For every sentence,
we iterate over the list of one word candidate features. The total occurrences of
the feature and the p_support are then tabulated for every candidate feature. We
observe that a lot of meaningless features like ’amazon’ and ’app’ have very high
p_support values and the total occurrences match their p_support since no superset
of these features exists. The candidate features having p_support greater than the
user defined threshold value of this p_support and whose total occurrences does
not equal its p_support will be considered as meaningful one word features. The
second condition helps us to get rid of many meaningless features although there is

a tradeoff of losing a few features. Proper tuning of the threshold value is required
for good results.

2.2.4 Spelling correction:

Once we have got a list of meaningful features from pruning, we apply spelling cor-
rection to the corpus to replace misspelled words with correct words. For 'camera’
may be misspelled incorrectly as ‘cemera’ in any review (and may lead to the algo-
rithm ignoring the review), so we form a dictionary and keep a track of such words
and replace those words with the correct words during opinion extraction.

Levenshtein distance is calculated for every noun extracted from POS tagging with
every feature in the list obtained after pruning. Levenshtein distance is a string
metric for measuring the difference between two sequences. Informally, the Leven-
shtein distance between two words is the minimum number of single-character edits
(insertions, deletions or substitutions) required to change one word into the other.
Max distance taken is varied from 1 to 3, and it is observed that the best results are
obtained for max distance as 1, otherwise a lot of wrong cases come up in our list. If
the first letter of both the noun taken and feature matches, then only the distance
is calculated. This reduces many wrong cases to come up like brick and price. How-
ever, some wrong cases still exist. For example - 'qualify’ is treated as ’quality’ and
'like’ is treated as ’life’. There is a tradeoff between some wrong information and
loss of lot of information. In this work, we ignore any wrong information considering
very low probability of having much influence on our opinion scores.

For every word a dictionary is made whose key are the nouns and the values are
from the feature list, which are grammatically correct. This dictionary lets us keep
a track of all the words and their correct forms without changing our actual re-
view corpus. So any opinion associated with the misspelled word will be treated as
opinion associated with the correct meaningful feature.

2.3 Opinion Mining
2.3.1 Opinion extraction

Our first task is to mine the opinion words corresponding to the feature in the
sentence. Opinions can be explicitly and implicitly mentioned in a sentence. For
example - 7 The phone is amazing but it is too big in size”, this statement contains an
explicit opinion about the battery but an implicit opinion about ’size of the phone’.
We will focus on explicit opinions in our work as implicit opinions are difficult to
mine. Opinionated phrases are of following types - Adj+Adj pair, Adv/Neg+Ad]
pair, Adv/Neg+verb pair and verb+Adj pair. An opinion phrase can either occur
before the feature or after the feature. For example - "the phone has good battery.”
and "The camera is amazing.” contains the opinion before and after the feature
respectively. In this work, we assume that a customer expresses a single opinion
about a particular feature in a sentence in his/her review, which is the usual case.
In [7] nearest adjective to a product feature is considered as the opinion word for
that particular feature. This is supported by the previous work on subjectivity [4].
For one word feature, we extract the nearest opinionated phrase to it from any side

in the sentence. For two word feature, the nearest opinionated phrase from any side
of any of the two words in the sentence is extracted by the help of POS tagger of
spaCy. Next, sentiment scores are obtained based on the intensity of emotions in
opinions.

2.3.2 Scoring the Sentiments

We use VADER (Valence Aware Dictionary and sEntiment Reasoning) [9] for po-
larity extraction and scoring the sentiments. VADER is applied to the phrases
obtained from the reviews before the cleaning (lowercasing and demojification) so
as to retain the emojis and the capitalized words which are treated differently by
VADER. It outputs 4 polarity scores namely positive, negative, neutral and com-
pound. A summation of the all the positive, negative and compound polarity scores
of all opinion phrases corresponding to a specific feature is done to finally get total
positive, negative and compound polarity scores associated with that feature. The
total positive and total negative polarity scores were taken to get the final sentiment
score of a particular feature as follows:

Total Positive Polarity

Senti t S = 100 (3
entiment Score(7%) Total Positive Polarity 4+ Total Negative Polarity *)

This final score tells us the percentage positive opinion towards the specific feature.

VADER works well with opinionated phrases having adjective in them. However,
for some cases where the opinion is conveyed through verb+adverb pair or a nega-
tion+verb pair, VADER fails. For example - VADER assigns a zero negative and
a zero positive score for ”The camera is not working properly.” But this statement
clearly depicts a negative opinion about ’camera’. So for the cases where we do not
have any adjective in the opinionated phrase and VADER assigns it a 0 negative
and 0 positive polarity score inspite of the phrase containing a negation word, we
assign the phrase a 0.25 negative score, 0 positive score and a -0.25 compound score.
There exists a dictionary of all negation words in VADER, which is used here. The
value of 0.25 is taken arbitrarily as it does signify that the opinion is in negative
but also does not make a very large impact on the overall score of the feature. This
improvement to VADER technique is suggested by us in our work.

3 Experiments

A brief overview of experiments done after applying our proposed method is as
follows:

1. Fetching and cleaning the dataset

Experiments: Downloaded review corpus from Amazon Shark. The dataset
of all stars are combined to get a bigger dataset of around 5000 entries.
Another dataset of 1427 data points also obtained. Both contain customer
reviews of a mobile of a popular brand. Both datasets contained several
columns of which only the review text column was considered for the
analysis. Preprocessing pipeline is applied to the datasets.

Observation: The data can be sorted using a number of stars and the title
of the review can be used as one of the features for sentiment evaluation.

Challenges: Converting everything to lowercase may affect the sentiment
analysis so the actual text is kept as well and is to be used during sentiment
scoring.

. Processing the nouns extracted

Experiments: During POS tagging, lemmatization is done on the list for
converting plural nouns to singular nouns. Proper nouns, common nouns,
noun phrases and compound nouns are extracted as well.

Observation: Noun phrases and compound nouns give us features like
"touch response’ but these will be automatically extracted on applying
association rules mining, so these are not explored further. There may be
some loss of features if we were to consider only one of common nouns and
proper nouns. Thus to avoid this loss, both common nouns and proper nouns
are extracted collectively as nouns.

Challenges: There exist grammatical errors in the list of nouns extracted,
so a method needs to be devised to take care of them.

. Spelling correction of the nouns

Experiment: Using nltk.corpus.words, only those nouns which are
grammatically correct are considered to be taken forward. On comparing the
use of Levenshtein distance and cosine similarity, Levenshtein distance is a
better option for comparing words. After getting a grammatically correct
list, we convert the incorrect words to the correct word if levenshtein
distance is less than 3.

Observations: Words like helio, con, pic, pro made it to the correct nouns
list. Words like smartphone, redmi, realme, hotspot, touchscreen didn’t make
it to the list.

Challenges: A lot of wrong observations lead to discarding this method of
correcting the spelling of misspelled words. This problem is solved by
association rules mining, as it is likely to extract only the correct nouns. The
spelling correction needs to be done before sentiment analysis so that we
don’t lose a lot of information.

. Association rules mining and frequent feature mining

Experiment: The apriori algorithm is used to get frequent itemsets from
the review corpus with min s = 1 and ming,pper: = 0.01. The results are
analysed at different support values.

Observations: All extracted features are grammatically correct. Lot of
unwanted features like amazon, app show up when support is 0.01. Some
important features like battery backup is lost when support = 0.02.

Challenges: Features like ’amazon’, ’app’, 'battery camera’ need to be
removed using some techniques. Features like 'fingerprint’, finger print’ are
treated differently. The value of support is dependent on the dataset and
hence will be a hyperparameter to be tuned by the user.

5. Feature Pruning

Experiment: Compactness pruning is applied to remove the non-compact
two word features like ’battery camera’. Redundancy pruning is done to
remove meaningless one word feature.

Observations: List obtained after pruning contains only grammatically
correct nouns. The values of m_support and p_support are dependent on
dataset. The final feature list contain all grammatically correct meaningful
features.

Challenges: The values of the thresholds for both pruning methods is
highly dependent on the review corpus, hence these will be hyperparameters
for the user to tune. Not all features can be extracted fully by doing pruning.
Some important features are lost as a tradeoff to better results.

6. Correcting the nouns

Experiment: Spelling correction is applied to every noun extracted from
POS tagging using the list obtained after pruning.

Observations: For maximum distance 1, most of the matches come out to
be correct. For maximum distance 2 and 3, and also the case where the first
letters are not matched, the wrong information is too much and cases like
‘buyer’ and "budget’ start to match, hence these cases are not considered
further. Matching the first words reduces a lot of incorrect cases.

Challenges: For maximum distance 1, some cases are lost like 'bettry” and
'battery’ and some wrong cases still occur like ’like” and ’life’.

7. Sentiment Analysis

Experiment: Passing all the sentences through opinion mining pipeline
(here the sentences are taken from the review before preprocessing
techniques were applied as the cleaning may lead to reduction of intensity of
words that is sometimes is expressed by virtue of big bold fonts,emojis, etc.
However, the dictionary generated after spelling correction is used to relate
the opinions associated to the incorrect word to the correct feature.)

Results: VADER mostly takes into account the effects of capitalization and
emoji along with the adjectives that contributes towards the sentiments.
Sentiment scores depict the amount of positive polarity towards a particular
feature.

Challenges: The nearest phrase assumption may get violated at places.
VADER is ineffective at times and has many shortcomings not all of which
have been taken care of.

4 Conclusions

In this project, we propose a pipeline to extract meaningful features from the
customer reviews and get a sentiment score for each feature which is a measure of
positive polarity towards that feature. To achieve this objective, we divide our
pipeline into three major sections - cleaning, feature extraction and opinion

Feature Positive Polarity | Negative Polarity | Sentiment Score (%)
Camera quality 43.59 8.6 83.52
Battery backup 20.62 1.48 93.29

Price 43.57 3 93.54

Camera 111.5 22.322 83.32

Table 1: A glimpse of final result of the project

mining. Cleaning the dataset involves cleaning the reviews and removing all
useless data. Feature extraction pipeline generates a list of meaningful features.
Finally, opinions towards features are extracted and sentiment scores are assigned
to each feature in the opinion mining pipiline. We have evaluated this method on a
review dataset of smartphone of a popular brand and the results were meaningful.

5 Future Work

Future works includes some modifications in the pipeline such as incorporating the
stars by the customers as a measure of the sentiment of the features. After doing a
survey of a good amount of products, a threshold score can be decided as a good
score, below which the feature is considered to be under-performing, and such
cases can be highlighted to the customers for much better insights of a product.
Similarly, a threshold value can also be set above which the features are said to be
performing excellently and par expectations. Two or more similar product features
can also be compared on the basis of the sentiment scores obtained using our
method.

Our approach uses VADER for scoring the sentiments. Although, VADER works
with emojis and slangs effectively, there are many shortcomings of VADER. For
example, “This film should be brilliant. It sounds like a great plot. However, it
can’t hold up” or “I hate the Spice Girls. ... Why I saw this mouvie is a long story,
but I did, and one would think I'd despise every minute of it. But... Okay, I'm
really ashamed of it, but I enjoyed it. I mean, I admit it’s a really awful mouvie.
The plot is such a mess that it’s terrible but I loved it.”. In these examples, a
human would easily detect the true sentiment of the review. VADER classifier
would presumably find these instances difficult, since there are many words
indicative of the opposite sentiment to that of the entire review. It seems that
some form of discourse analysis is necessary or at least some way of determining
the focus of each sentence, so that one can decide when the author is talking about
the film itself. Furthermore, it seems likely that this thwarted-expectations
rhetorical device will appear in many types of reviews devoted to expressing an
overall opinion about some feature. Hence, we believe that an important next step
is the identification of features indicating whether sentences are on-topic (which is
a kind of co-reference problem).

10

References

[1] R. Agrawal, Rakesh Srikant, “Fast algorithms for mining association rules,”
in Proc. 20th Int. Conf. Very Large DataBases, 2000.

[2] A. Aue and M. Gamon, “Customizing sentiment classifiers to new domains: a
case study,” in Proceedings of RANLP, 2005.

[3] L. L. B. Pang and S. Vaithyanathan, “Thumbs up? sentiment classification
using machine learning techniques,,” in Proceedings of the EMNLP., 2002.

[4] R. Bruce and Wiebe, “Recognizing subjectivity: A case study of manual
tagging,” in Natural Language Engineering, 2000.

[5] R. N. Gourab Nath, Randeep Ghosh, “Cluster analysis of customer reviews:
Summarizing customer reviews to help manufacturers identify customer
satisfaction level,” 2017.

[6] M. Honnibal and I. Montani, “spaCy 2: Natural language understanding with
Bloom embeddings, convolutional neural networks and incremental parsing,”

2017.

[7] B. Hu, Minqging Liu, “Mining and summerizing customer reviews,” in
Proceedings of the Tenth ACM SIGKDD, International Conference on
Knowledge Discovery and Data Mining, KDD -2004.

[8] M. Hu and B. Liu, “Mining opinion features in customer reviews,” in
Proceedings of AAAIL 2004., ser. GW’09, 2004.

[9] E. Hutto, C.J. Gilbert, “Vader: A parsimonious rule-based model for
sentiment analysis of social media text.” in Fighth International Conference

on Weblogs and Social Media (ICWSM-14), 2014.

[10] P. Murthy, V. Bhattacharyya, “A deep learning solution to named entity
recognition,”,” 2018.

11

	Introduction
	Literature Review

	Approach
	Review Cleaning
	Frequent Feature Identification
	Parts-of-Speech (POS) Tagging:
	Association Rules Mining
	Feature Pruning
	Spelling correction:

	Opinion Mining
	Opinion extraction
	Scoring the Sentiments

	Experiments
	Conclusions
	Future Work

